Credit Risk Evaluation with Least Square Support Vector Machine
نویسندگان
چکیده
Credit risk evaluation has been the major focus of financial and banking industry due to recent financial crises and regulatory concern of Basel II. Recent studies have revealed that emerging artificial intelligent techniques are advantageous to statistical models for credit risk evaluation. In this study, we discuss the use of least square support vector machine (LSSVM) technique to design a credit risk evaluation system to discriminate good creditors from bad ones. Relative to the Vapnik’s support vector machine, the LSSVM can transform a quadratic programming problem into a linear programming problem thus reducing the computational complexity. For illustration, a published credit dataset for consumer credit is used to validate the effectiveness of the LSSVM.
منابع مشابه
Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملCredit Risk Classification Using Kernel Logistic Regression-least Square Support Vector Machine
Kernel Logistic Regression (KLR) is one of the statistical models that have been proposed for classification in the machine learning and data mining communities, and also one of the effective methodologies in the kernel-machine techniques. The parameters of KLR model are usually fitted by the solution of a convex optimization problem that can be found using the well known Iteratively Reweighted...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملHybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
متن کاملModeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique
Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...
متن کامل